
pyaoscx
Release 0.1.0

Mar 12, 2020

Contents:

1 Getting Started 3
1.1 Installation Instructions . 3
1.2 Package Structure . 3

1.2.1 pyaoscx . 4
1.2.2 workflows . 4

1.3 Executing Workflows . 4
1.4 Creating Workflows . 5

2 Function Documentation 7

3 Indices and tables 9

i

ii

pyaoscx, Release 0.1.0

The AOS-CX operating system provides a REST API to enable automated configuration and management of switches.
This package contains Python modules that can be called upon to access the REST API and configure various features
on the switches.

Note: Starting from AOS-CX release 10.04, there are two version of the REST API, the legacy v1 API and the newer
v10.04 API.

Contents: 1

pyaoscx, Release 0.1.0

2 Contents:

CHAPTER 1

Getting Started

Important: This package is compatible with Python 3. Python 2 is not supported.

First ensure that REST API access is enabled and set to read/write mode with the following commands:

switch(config)# https-server rest access-mode read-write
switch(config)# https-server vrf mgmt

Additionally, ensure that the switch is reachable via an out-of-band management IP address with the appropriate login
credentials.

1.1 Installation Instructions

Python comes with a package management system, pip. Pip can install, update, or remove packages from the Python
environment. It can also do this for virtual environments. It is a good idea to create a separate virtual environment for
this project. A guide to virtual environments can be found here.

To use pip to install the pyaoscx package from the official Python Package Index, PyPI, excecute the following com-
mand:

pip install pyaoscx

1.2 Package Structure

pyaoscx
README.md
Contributing.md
...

(continues on next page)

3

https://packaging.python.org/tutorials/installing-packages/#id17
https://docs.python-guide.org/dev/virtualenvs/

pyaoscx, Release 0.1.0

(continued from previous page)

pyaoscx
access_security.py
acl.py
...

docs
...

workflows
cleanup_l2_l3_vlans.py
configure_l2_l3_vlans.py
print_system_info.py

The pyaoscx package is a directory containing files and subdirectories. Contained directly within the top level
pyaoscx directory are informative files such as the readme, licensing information, contribution guidelines, and
release notes. Also contained within the pyaoscx package are the subdirectories relevant to the developer, pyaoscx
and workflows.

1.2.1 pyaoscx

The pyaoscx subfolder contains the AOS-CX Python modules. Each module contains function definitions which
either make a single REST API call or make multiple REST API calls. Each function that makes multiple REST API
calls is written as such to perform a small logical low-level process (e.g. create a VLAN and then subsequently create
a corresponding VLAN interface). The REST API calls are performed using the Python requests library, which
provides functions to make HTTP GET, PUT, POST, and DELETE requests.

1.2.2 workflows

Workflows are scripts that combine calls to the functions in the pyaoscx modules (API call functions and low-level
functions) to emulate larger network configuration processes. The workflows subfolder contains three example
workflows. Each contains comments that describe step-by-step the operations being performed. You can make copies
of these workflows in your own user directory and run them directly, or you can reference these examples to create
your own workflows.

1.3 Executing Workflows

After installing the package, you should be able to execute workflows. Let’s try that out by executing the simplest
example workflow, print_system_info.py. This workflow simply logs into a switch and then prints switch configuration
info to the console. To execute this workflow, first, copy this workflow from the workflows folder to a working
directory outside of the package. Open your copy of the script and you’ll notice that the try: block in the main()
function consists of these statements:

session_dict = dict(s=session.login(base_url, username, password), url=base_url)

system_info_dict = system.get_system_info(params={"selector": "configuration"},
→˓**session_dict)

pprint.pprint(system_info_dict)

4 Chapter 1. Getting Started

pyaoscx, Release 0.1.0

The first two lines call the session.login() and system.get_system_info() functions in the session
and system modules, respectively. The third line simply prints the system information out to the console in readable
format.

Execute the workflow. You’ll be asked to input the switch’s out-of-band management IP address, login username, and
password. After you do that successfully, the rest of the script should run and you should see this output:

C:\Users\wangder\AppData\Local\Programs\Python\Python37-32\python.exe "C:/Users/
→˓wangder/OneDrive - Hewlett Packard Enterprise/git/packaging/pyaoscx/workflows/print_
→˓system_info.py"
Switch IP Address: <IP address redacted>
Switch login username: <username redacted>
Switch login password: <password redacted>
INFO:root:SUCCESS: Login succeeded
INFO:root:SUCCESS: Getting dictionary of system information succeeded
{'aaa': {'fail_through': False,

'login_lockout_time': 300,
'radius_auth': 'pap',
'radius_retries': 1,
'radius_timeout': 5,

.

.

.

.

.
}
INFO:root:SUCCESS: Logout succeeded

Congratulations! You’ve just run your first AOS-CX Python workflow!

1.4 Creating Workflows

To create your own workflows, follow the structure of the three provided example workflows. Generally speaking, the
key elements of a workflow script are:

1. Importing the appropriate modules from pyaoscx.

2. Logging into the switch(es) by calling session.login().

3. Calling the functions in the imported modules to execute the desired actions (the ‘core steps’ of the workflow).

4. Logging out of the switch(es) by calling session.logout().

If you open configure_l2_l3_vlans.py and compare it to print_system_info.py, you’ll notice that
the main difference between the two scripts is the core steps. Inside the try: block, instead of getting the system
information and printing it, we have calls to create a VLAN and VLAN interface, among other operations:

vlan.create_vlan_and_svi(999, 'VLAN999', 'vlan999', 'vlan999',
'For LAB 999', '10.10.10.99/24', vlan_port_desc='### SVI for

→˓LAB999 ###',

**session_dict)

Add DHCP helper IPv4 addresses for SVI
dhcp.add_dhcp_relays('vlan999', "default", ['1.1.1.1', '2.2.2.2'], **session_dict)

Add a new entry to the Port table if it doesn't yet exist
interface.add_l2_interface('1/1/20', **session_dict)

(continues on next page)

1.4. Creating Workflows 5

pyaoscx, Release 0.1.0

(continued from previous page)

Update the Interface table entry with "user-config": {"admin": "up"}
interface.enable_disable_interface('1/1/20', **session_dict)

Set the L2 port VLAN mode as 'access'
vlan.port_set_vlan_mode('1/1/20', "access", **session_dict)

Set the access VLAN on the port
vlan.port_set_untagged_vlan('1/1/20', 999, **session_dict)

Similarly, the core steps in cleanup_l2_l3_vlans.py unconfigure the configuration done by
configure_l2_l3_vlans.py by essentially performing the opposite actions:

Delete all DHCP relays for interface
dhcp.delete_dhcp_relays('vlan999', "default", **session_dict)

Delete VLAN and SVI
vlan.delete_vlan_and_svi(999, 'vlan999', **session_dict)

Initialize L2 interface
interface.initialize_interface('1/1/20', **session_dict)

In the example workflows, the arguments in the function calls are hardcoded in the scripts, and the switch IP address
and login credentials are provided by the user at runtime. Instead, you can have the script accept these data points,
along with the arguments for the other functions, from an input file.

You can see examples of how to do this in our Github repo. This repo contains more example workflows in its
workflows folder. You’ll notice that the example workflows in the Github repo read data from the YAML files in the
sampledata folder, and then use that data for arguments in function calls, as opposed to having the data hardcoded
in each workflow. Separating the data out into input files also makes it easier for the configuration parameters to be
modified.

6 Chapter 1. Getting Started

https://github.com/aruba/aos-cx-python

CHAPTER 2

Function Documentation

Scroll down to the “Indices and tables” section and then click on “Module Index” to see all the available documentation
for all the functions in the modules.

7

pyaoscx, Release 0.1.0

8 Chapter 2. Function Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

9

	Getting Started
	Installation Instructions
	Package Structure
	pyaoscx
	workflows

	Executing Workflows
	Creating Workflows

	Function Documentation
	Indices and tables

